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Abstract: Escherichia coli is species of bacteria which can be grouped into two types: One that causes illness to 

human beings and second group is a harmless bacterium. The harmful ones cause disease by producing toxin 

known as Shiga toxin; they are called Shiga toxin producing Escherichia coli. In this project, a model consisting of 

three sub populations which named; susceptible population S(t), Infected population I(t) and recovered population 

R(t). Differential equations were formulated from the model. Disease free equilibrium and Endemic equilibrium 

were determined from the model equations. The disease-free equilibrium was determined to be asymptotically 

stable when R0 < 1 and unstable otherwise. The basic reproductive number (R0) was computed using Next 

generation method. Through sensitivity analysis, the most sensitive parameter to the basic reproductive number 

was determined. Numerical simulation of the model equations was done. 
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1.   INTRODUCTION 

Escherichia coli (E. coli) is a species of bacteria which could be divided into two types: one that causes illness to human 

beings, and one that is harmless. This species is among the leading causes of common infections from bacteria. Such 

infections include travellers’ diarrhoea, urinary tract infection (UTI), Haemolytic Uremic Syndrome (HUS), Cholecystitis 

and Cholangitis [1]. The harmful bacteria cause diseases by producing toxin known as Shiga toxin. They know as Shiga 

Toxin producing Escherichia coli (STEC) Verocytotoxin E.coli (VTEC)or Enterohemorrhagic E.coli (EHEC). 

Haemolytic Uremic Syndrome (HUS) is a life-threatening disease which is caused by Shiga toxin producing bacteria. 

Cattle are considered to be natural reservoir of the pathogens and they act as a major source of human infection. This 

takes place directly or indirectly through their products. STEC 015:H7 is recognized to be the pathogen with the greatest 

impact on public health, with various serotype (STEC) identified worldwide [2]. 

Majority of outbreaks of STEC arise from the consumption of contaminated food such as milk, fruits, meat, raw 

vegetables and water [4]. Most of the food borne pathogens live in the gastrointestinal tract of animals, so the main route 

of pathogen excretion is through faecal shedding [5]. Due to indirect contact with farm and petting zoo environment or 

direct contact with animals’ outbreaks can occur. The main reservoirs of Shiga Toxin producing Escherichia coli are 

mostly raw milk, under cooked beef, the intestinal tracts of healthy cattle and food products from these sources that are 

poorly handled [11]. Cattle that are colonized by shedding Escherichia coli are not only the source of food contamination 

at slaughter, but their manure may also contaminate fruits and vegetables when used as fertilizer [7]. Spreading of Shiga 

Toxin producing Escherichia coli to human beings occur merely when they consume contaminated food. In Scotland, a 

large population in rural areas have been at great risk of vulnerability to Shiga Toxin producing Escherichia coli due to 

their great exposure to animals and their waste product like faeces and urine [9]. Shiga Toxin producing Escherichia coli 

has been discovered in most developed countries to be the source of disease outbreaks. These outbreaks are of great 

concern in health care programs. Two-thirds of the outbreaks related with food-borne illness caused by Shiga Toxin 

producing Escherichia coli in United State of America were due to consumption of raw vegetables [12]. 

The largest catastrophe was caused by Shiga Toxin producing Escherichia coli faced Germany in 2011, whereby 3842 

cases were reported. The laboratory results confirmed Escherichia coli gastroenteritis (fever, vomiting, lack of appetite, 

diarrhoea) among 2987 cases. Among 855 people who reported having Haemolytic Uremic Syndrome (HUS); 35 of them 

died [13]. 
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In Tanzania, cattle and goats are accommodated together in residential areas. The animal excreta produced overnight is 

removed by hoes or bare hands and accumulated near the residential areas. During the day, graze together in the same 

area. During grazing, the infected cattle transmit the bacteria to the environment through their excreta. During hot 

seasons, there are large outbreaks caused by Shiga Toxin producing Escherichia coli due to the sharing of common 

sources of drinking water between human beings and livestock. The serotype that is found in Tanzania specifically in 

cattle and water are mostly E. coli 0157:H7 and Enteropathogenic E. coli (EPEC) [14]. 

Diarrheal and urinary tract infection (UTI) are consequences of outbreaks caused by Shiga Toxin producing Escherichia 

coli in under developed countries. 64.5% and 70% of UTI which were reported in Kenya and North-Western Tanzania 

respectively were caused by Escherichia coli infections. Likewise, in North- Eastern Tanzania, children under 5 years old 

and aged people were discovered to be victims of UTI [14]. 

A cross-section study of urban and preurban livestock was carried out in Morogoro. It was done by isolating and 

characterizing Non-Sorbitol fermenting (NSF) Escherichia coli. The samples collected were water, soil, human stool and 

faeces from cattle. Questionnaires were used for interviews and the questions were meant to find out the management 

practices concerning cattle and manure. The sorbitol MacConkey agar was used to isolate and characterize Escherichia 

coli by conventional biochemical tests. 7% of the pathogen Escherichia out of 1049 samples collected were discovered 

[14]. 

A research was conducted on the growth of Shiga Toxin producing Escherichia coli in uncooked cattle meat. Through 

Ratkowsky square-root model, it was found that Shiga Toxin producing Escherichia coli bacteria increases under 

minimum temperatures [15]. 

A study on transmission of Escherichia coli infection through dairy milk was performed. Biochemical tests were used to 

test fresh cattle dung. Observations showed that Escherichia coli bacterial infections were present in the sample.[16]. 

A research on how the transmission of Shiga Toxin producing Escherichia coli in cattle is influenced by the level of 

environmental contamination was conducted. The SIS mathematical model was used to estimate and compare the 

transmission rates. The findings showed that the transmission rate of Shiga Toxin producing Escherichia coli increased as 

the environment contamination rate increased [17]. 

2.   MODEL FORMULATION AND DESCRIPTION 

A total population of human beings which vary with time is N(t). It is divided into three categories consisting of people 

who are susceptible to the diseased S(t), the infected population I(t) and recovered population R(t). The susceptible 

population move to the infected population either through contact with the infected people at a rate (β) or through contact 

with the contaminated environment at a rate (ψ). The infected category moves to the recovered population at a rate (α). 

The recovered population consists of permanent immunity and temporary immunity, the temporary immunity population 

progresses to the susceptible category at the rate (σ). The natural death rate for all categories is (µ). The death rate due to 

disease (γ). The recruitment rate of the population in susceptible category is (Λ). The entire population is denoted by N(t) 

and is given by: 

N (t) = S (t) + I (t) + R(t) (1) 

Figure 1 below represent Shiga Toxin dynamic 

 

 

 

 

 

 

Figure 1: Model Flow 
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The differential equations constructed from the model: 

  

  
                 

 

  

  
                  

 

 

  

  
           

3.   DISEASE FREE EQUILIBRIUM 

This is the situation in which no disease is present in the populations [8]. At this moment the infectious and recovered sub 

population will be equal to zero, which means, the susceptible become the total population; so, R(t)=0 and I(t)=0.  It is 

calculated by equating all the differential equations equal to zero. 

  

  
   

  

  
   

 

  

  
   

From the model equations; 

 

0 = Λ + σR − βSI − S (µ + ψ) 

0 = βSI + ψS − I (µ + γ + α) 

0 = αI − (σ + µ) R 

 

 

At equilibrium; (S, I, R) = (S∗, I∗, R∗) Therefore: 

 

0 = Λ + σR∗ 
− βSI∗

 
− S∗ 

(µ + ψ) since I∗
 
= R∗ 

= 0 then; 

0 = Λ − S∗ 
(µ + ψ) 

 

At disease free equilibrium (DFE); 
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Therefore 

Disease free equilibrium is    

3.1 Stability of the Disease-Free Equilibrium 

Theorem 1: Disease free equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1 [18] 

Theorem 2: A necessary and sufficient condition for an equilibrium to be locally asymptotically stable is that, all     

eigenvalues of the Jacobian have negative real part [6]. 

Since disease free equilibrium is  

The Stability of DFE is obtained from Jacobian matrix; 

(

    ∗         ∗  
  ∗     ∗                

          
) 

 

But  

The characteristic equation given by;   

|J − λI| = 0 

 

Then J (S*, 0, 0) =  

 

(

         ∗  
   ∗                

          
) 

The characteristic equations from Jacobians matrix: 

0 = |

           ∗  

 (  ∗               )     

            

|  

Where λ are eigenvalues 

Therefore 

((µ + ψ) + λ) ((µ + σ) + λ) ((βS∗ 
− (µ + α + γ)) − λ) − βS∗ψ ((µ + σ) + λ) + σψα = 0 

 

0 = −λ
3 
+ [βS∗ 

− (µ + α + γ) − (2µ + ψ + σ)] λ
2
 + [(βS∗ 

− (µ + α + γ)) (2µ + ψ + σ) − (µ + ψ) (µ + σ) − βS∗ψ] λ 

+[(µ + ψ)(µ + σ)((βS∗ 
− (µ + α + γ))) − βS∗ψ (µ + σ) + σψα] 0 = λ

3 
− [βS∗ 

− (µ + α + γ) − (2µ + ψ + σ)]λ
2
−[(βS∗ 

− (µ + α + 

γ))(2µ + ψ + σ) − (µ + ψ)(µ + σ) − βS∗ψ]λ −[(µ + ψ)(µ+ σ)((βS∗ 
− (µ + α + γ))) − βS∗ψ (µ + σ) + σψα] 

 

0 = λ
3 
+ [(µ + α + γ) − βS∗ 

+ (2µ + ψ + σ)] λ
2
+ [((µ + α + γ) − βS∗) (2µ + ψ + σ) + (µ + ψ) (µ + σ) + βS∗ψ] λ 

+[(µ + ψ)(µ + σ)(µ + α + γ) − (µ + ψ)(µ + σ)βS∗ 
+ βS∗ψ (µ + σ) − σψα] 0 = λ

3 
+ [(µ + α + γ)(1 − R0) + (2µ + ψ + σ)]λ

2
+[(µ 

+ α + γ)(1 − R0)(2µ + ψ + σ) + (µ + ψ)(µ + σ) + βS∗ψ]λ+[(µ + ψ)(µ + σ)(µ + α + γ)(1 − R0) + βS∗ψ (µ + σ) − σψα] 
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Theorem 3: By the principle of Routh Hurwitz criteria, the roots of the polynomial will be negative if and only if the 

coefficients are positive [19]. 

Let the polynomial be, λ
3 
+ A1λ

2 
+ A2λ + A3 = 0 

Where 

A1 = [(µ + α + γ) (1 − R0) + 2µ + ψ + σ] 

A2 = [(µ + α + γ) (1 − R0) (2µ + ψ + σ) + (µ + ψ) (µ + σ) + βS∗ψ] 

A3 = [(µ + α + γ) (µ + ψ) (µ + σ) (1 − R0) + βS∗ψ (µ + σ) − σψα] 

For the coefficients to be positive, 1 − R0 must be positive which leads the R0 < 1. 

Therefore, the diseased free equilibrium (DFE) is locally asymptotically stable (L.A.S) 

4.   BASIC REPRODUCTION NUMBER 

It is defined as the average number of secondary cases produced by one infected person introduced into the susceptible 

population [20]. 

R0 is used to measure the spread of disease in the population. If R0 is less than 1, then the disease-free equilibrium is 

locally asymptotically stable. The spreading of disease is decreasing. Otherwise is unstable, the rate of spreading is 

increasing [10]. We compute R0 by using the concept of next generation matrix [18]. 

The infectious sub population of the model will be under consideration. 

  

  
                  

Let f (xi) be the new infectious in the infected compartment. 

Therefore f (xi) = βSI + ψS 

 

 

      

   

     ∗
  

   

     ∗ 

But    ∗  
 

   
 Therefore.    

 

   
 

Again, we let Vi
+ 

(x) be the rate of shifting of an individual into an infected compartment. Vi
+ 

(x) = 0 

Vi
− 

(x) be the rate of an individual transferring out of infected compartment. 

Vi
− 

(x) = (µ + γ + α) I 

So; 

V (xi) = Vi
− 

(x) − Vi
+ 

(x) 

Therefore, Vi (x) = (µ + γ + α) I 
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5.   ENDEMIC EQUILIBRIUM 

The endemic equilibrium indicates that, there is spreading of disease in the society. Endemic equilibrium is denoted by E∗ 

where E∗ 
= (S∗, I∗, R∗). To find it, we equate all model differential equations equal to zero. Therefore, 

  

  
   

  

  
   

  

  
   

Theorem 4: A unique endemic equilibrium of a system exists if R0 > 1 [21]. 

Proof  

0 = Λ + σR − βSI − S (µ + ψ) 

0 = βSI + ψS − I (µ + γ + α) 

0 = αI − (σ + µ) R 

 

 ∗   
  ∗

     
 

substitute R∗ 
in 0 = Λ + σR − βSI − S (µ + ψ), we get 

 

 

when we multiply each term by (µ + σ) we obtain 

 

 

 

 

 

 

 

 

 

 

Then we substitute S∗ 
into; 0 = βSI + ψS − I (µ + γ + α) 

 

Through expansion and simplification, we obtain 

    − [(µ + γ) (µ + σ) β + αµβ] as the coefficient of I∗
2
, 

Again 

− [(µ + γ + α) (µ + σ) (µ + ψ) {1 − R0} − ψσα] as the coefficient of I∗
 
and 

Λψ (µ + σ) as a constant term. 

 

 

Then we multiply through by (µ + σ) (βI∗
 
+ µ + ψ) we have 

 

0 = (ψ + βI∗) [(µ + σ) Λ + σαI∗] − (µ + σ) (βI∗
 
+ µ + ψ) (µ + α + γ) I∗  
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Therefore, we have 

D2I∗2 + D1I∗ + D0 = 0 

Where 

D2 = (µ + γ) (µ + σ) β + αµβ 

D1 = (µ + γ + α) (µ + σ) (µ + ψ) {1 − R0} − ψσα 

D0 = −Λψ (µ + σ) 

The endemic equilibrium will exist if the model system has real positive roots. According to Descartes rule of signs [21]. 

We will observe if there are real positive roots. Since D2 has positive sign and D1 has negative sign if R0 > 1, so there is at 

least one real positive root, then the endemic equilibrium exists. 

6.   SENSITIVITY ANALYSIS OF PARAMETERS 

In this section, the sensitivity analysis of each parameter has been examined. This analysis is performed to show the 

contribution of each parameter to the basic reproductive number. 

Positive values indicate a direct proportional between the given parameter and the R0. Conversely, when the outcome is 

negative the implication is an inverse proportional between the parameters and R0. In order to conclude the effect of 

changing the size of parameters, the absolute value of the index, in this case can be taken [22]. 

The sensitivity index of variable Y which depends on a parameter z is defined as:   [3]. where; 

Y represents the basic reproductive number and Z represents any parameter in the model. The parameter values used were 

Λ = 2.5, β = 0.15, µ = 0.01, α = 0.9, σ = 0.002, γ = 0.57, ψ = 0.28 

 

The basic reproductive number;  

 

    
  

            
  

  
      

  
      

  
   

            

            
  

  
   

  

       
  

  
   

  

       
  

  
   

  

     
  

Table 1: Table of sensitivity indices 

parameters Interpretation indices(+ve/-ve) 

Λ Recruitment rate +1 

µ Natural mortality rate -0.04124 

γ death rate due to disease -0.38514 

β contact rate between susceptible and infected population +1 

ψ contact rate due to contaminated environment -0.96552 

α recovered rate -0.60811 
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6.1 Interpretation of the parameter indices 

The parameters which have positive indices show the trend of the disease in the society. Their increase depicts an increase 

in the ’basic reproductive number’, and vice versa. It shows that Lambda (Λ) and Beta (β) are the most sensitivity found 

parameters in R0. Their increase, therefore implies that R0 is greater than one (R0 > 1), and their decrease, conversely, 

indicates the fact that R0 is less than one (R0 < 1). When the parameters have negative indices therefore impacting on 

either the decrease or increase of the value of the basic reproductive number. 

7.    NUMERICAL SIMULATIONS 

In this section, numerical simulation of the model equations was used in order to display the impact of contact rate due to 

contamination on human population. We applied numerical methods and MATLAB ode 45, on which parameter values 

were used. Table 2 below gives the values of the parameter used. 

Table 2: Parameter values 

parameters Interpretation Values   

Λ Recruitment rate 2.5 [23] 

µ Natural mortality rate 0.01 [24] 

γ death rate due to disease 0.57 [24] 

β contact rate between susceptible and infected population 0.15 assumed 

ψ contact rate due to contaminated environment 0.28 assumed 

α recovery rate 0.9 [24] 

σ recovered rate progressing to susceptible 0.002 assumed 

7.1 Shiga Toxin Infection Dynamics 

Figure 7.1 below gives details of the population dynamics with the presence of Shiga toxin amongst the community 

members. The number of the susceptible decreases as the number of the infectious people increase. The increase in the 

number of the recovered lags the increase in the infectious population but it surpasses it after the second week leading to 

flattening of the infectious curve in the fourth week. In the long run, the population is dominated by the recovered 

population leading to diminishing levels of the infectious population. 

 

Figure 7.1: Shiga toxin infection dynamics 

7.2 Susceptible population dynamics 

The population of the susceptible decreases gradually from the initial 10000 due to the increase in the number of 

infectious people and the recovered individuals as illustrated in figure 7.2 below. The decrease can also be attributed high 

infection rates and low recruitments rate during the short period of observation. It is clear that most of the people in the 

community are affected by the infection. This implies that endemic equilibrium is stable as R0 > 1 from figure 3 below. 

The parameter values used to compute R0 were 

Λ = 2.5, µ = 0.01, γ = 0.57, β = 0.25, ψ = 0.30, α = 0.9 
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Figure 7.2: R0 = 1.36225 

7.3 Infected population dynamics 

The infected population increases rapidly from the incident case to reach a peak of about 1600 people within the first four 

week. It then decreases gradually over the next six weeks as illustrated in figure 4 below. The population then stabilizes at 

slightly above 200 people. 

 

Figure 7.3: Infected population dynamics 

7.4 Recovered population dynamics 

Figure 7.4 below shows the trend of the recovered population which starts to grow in the first week and grows rapidly 

between week three and week eight. It then stabilizes in week nine and ten. The graph takes a sigmoid shape. The trend 

can be attributed to high recovery rates and low mortality rates as a result of the disease. The graph also indicates that 

most people who get sick recover from the disease. It implies that R0 < 1. The parameter values used to compute R0 were 

Λ = 2.5, µ = 0.01, γ = 0.57, β = 0.11, ψ = 0.20, α = 0.9 

 

Figure 7.4: R0 = 0.8848 
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7.5 Effect of environment contact rate on the infectious population 

The rate of infection decreases significantly at the environmental contact rate, represented in the model by ψ, decreases. A 

decrease the environmental contact rate decreases the peak of the infectious population. It also lags the peak of the 

infectious population giving more time for effective interventions to be enacted to better manage the disease as illustrated 

in figure 7.5 below 

 

Figure 7.5: Infectious population Under different values of ψ 

7.6 Effect of environment contact rate on the susceptible population 

Figure 7.6 shows that a decrease in the environmental contact rate leads to an increase in the susceptible population. This 

is attributed to low infection rates during low environmental contact rates thus leading to less people getting infected. 

 

Figure 7.6: Susceptible population under different values of ψ 

7.7 Effect of environment contact rate on the recovered population 

As the environment contact rate decreases the recovered population decreases since less people get infected. This trend is 

illustrated in the figure 7.7 below. 

 

Figure 7.7: Recovered population under different values of ψ 
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8.   CONCLUSION 

In this project, we composed and analysed mathematical modelling of Shiga toxin incorporating the environment. The 

Basic Reproductive number (RO) was obtained by use of the Next Generation Approach, and through it the model 

stabilities were determined. The sensitivity analysis of each parameter has been obtained. It shows that Lambda (Λ) and 

Beta (β) are the most sensitivity found parameters in R0. Their increase, therefore implies that R0 is greater than one (R0 > 

1), and their decrease, conversely, indicates the fact that R0 is less than one (R0 < 1). 

The rest of the parameters have negative indices, therefore impacting on either the decrease or increase of the value of the 

basic reproductive number. 

Numerical simulation was used to show the different behaviour of the compartments. The trajectories from the model 

illustrate that as the environmental contact rate (Ψ) increases, the susceptible trajectory decreases and consequently the 

infectious trajectory increases. Conversely, when the environmental contact rate decreases the susceptible trajectory 

increases. Epidemiologically, epidemic persists when R0 > 1 and the disease will be eliminated if R0 < 1. 

9.   DATA AVAILABILITY 

The data used in the analysis of the model were obtained from previously published articles and which have been cited 

accordingly. Some of the parameter values are assumed and others are taken from published articles. These articles are 

cited at relevant places within the text as references. 
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